

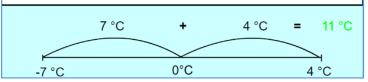
Number

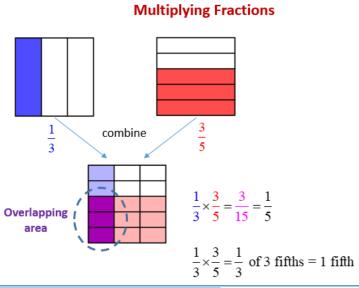
10 000 1000

X 10

X 100

X 1000


Number			Nearest Thousand	Nearest Ten Thousand	Nearest Hundred Thousand	Nearest Million
5 658 485	5 658 490	5 658 500	5 658 000	5 660 000	5 700 000	6 000 000


Number	Rounded to Nearest Ten			Nearest Ten Thousand	Nearest Hundred Thousand	Nearest Million
5 658 485	5 658 490	5 658 500	5 658 000	5 660 000	5 700 000	6 000 000

City	Vancouver	London	New York	Madrid	Delhi	Moscow
Temperature	-7 °C	4 °C	2 °C	16 °C	26 °C	-13 °C

click next for another question

What is the difference in temperature between London and Vancouver?

100

Multiplying

digits move LEFT 1 space

digits move LEFT 2 spaces

digits move LEFT 3 spaces

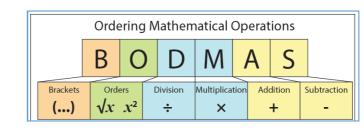
Multiplying and Dividing by 10, 100 and 1000

10

100

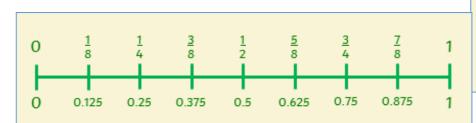
digits move RIGHT 1 space

digits move RIGHT 2 spaces


digits move RIGHT 3 spaces

Dividing

1000


10

- 4 digits x 2 digits
- 4 digits ÷ 2 digits and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- perform mental calculations, including with mixed operations and large
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

2.212 x 3

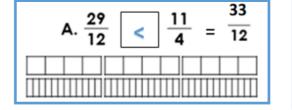
Tens	Ones	Tenths	Hundredths	Thousandths
	••	0000	•	00
	••	0000	001	00
	••	©1) ©1)	601	-

÷ 10

÷ 100

÷ 1000

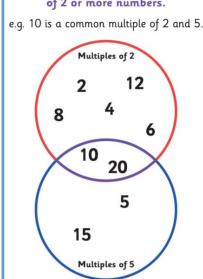
1/8 is half of a $\frac{1}{4}$ so what is half of 0.25 (think 25) = 0.125


$$5/8 = \frac{1}{2} + 1/8$$
, so $0.5 + 0.125 = 0.625$

$$3/8 = \frac{1}{4} + 1/8$$
, so $0.25 + 0.125 = 0.375$

$$7/8 = \frac{3}{4} + 1/8$$
, so $0.75 + 0.125 = 0.875$

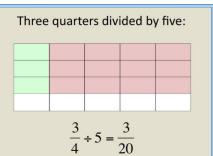
Common Multiples - allowing us to compare and order.

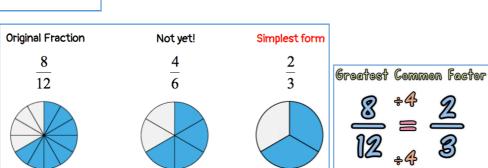

7 q	1 3	5 12	<u>2</u> 9	3 4
№ 28/36	12 36	15 36	8 36	<u>27</u> 36

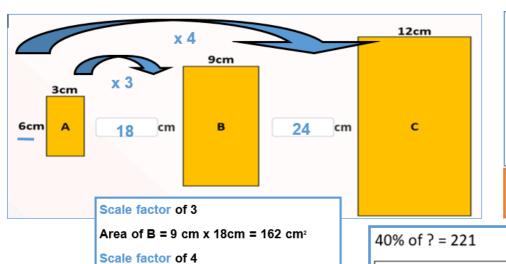
Common Factors A common factor is a factor of 2 or more numbers. e.g. 3 is a common factor of 6 and 15. Factors of 6 2 6 3 15 5 Factors of 15

Common Multiples

A common multiple is a multiple of 2 or more numbers.


Prime Numbers


A natural number greater than 1 with no divisors other than 1 and itself.

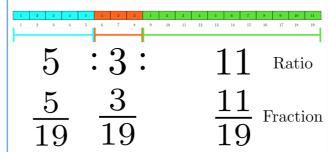


Remember these facts about Prime Numbers! There are no even numbers except 2.

There are no prime numbers ending in 5, except 5. The digits can't add up to 3 except 3 (digital root).

Area of C = 24cm x 12cm = 288 cm²

Some shapes can have the same area...

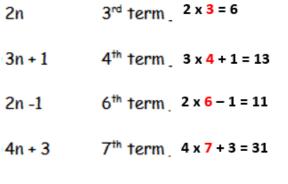

Area

Length × Width = Area

 $5cm \times 5cm = 25cm^2$

Perimeter

2 (5cm + 5cm) = 20cm

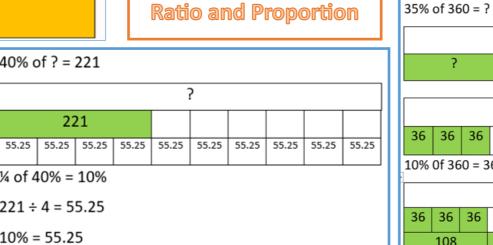

For every 5 blue, there are 3 orange and 11 green.

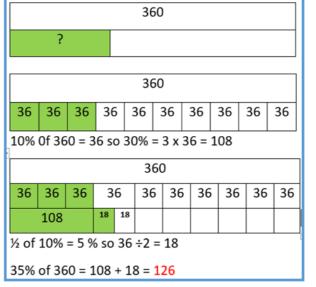
PROPORTION

5 in every 19 are blue.

3 in every 19 are orange.

11 in every 19 are green.




$$5n-4$$
 8^{th} term $5 \times 8-4=36$

$$7n + 8$$
 9^{th} term $7 \times 9 + 8 = 71$

$$\frac{1}{2}$$
 n + 3 6th term $\frac{1}{2}$ x 6 + 3 = 6

$$2n - 17$$
 4^{th} term. $2 \times 4 - 17 = -11$

x = 6

y = 8

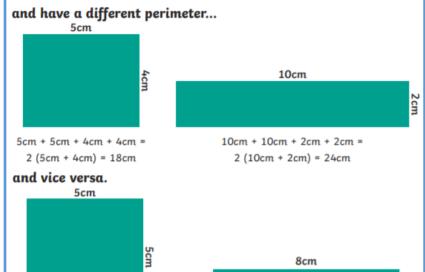
y = 8

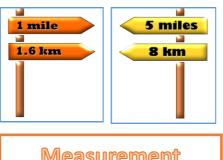
y = 21

y = 7

Cide 2
- 15 = 45
- 15 = 45 + 15
** = 60
× △ = 120
60 × △ = 120
<u> </u>
<u></u>

5cm			
4cm	10cm		1 mile
m		2cm	1.6 km
Length × Width = Area	Length × Width = Area		
$5cm \times 4cm = 20cm^2$	$10cm \times 2cm = 20cm^2$		l.
ınd have a different perin	ıeter	l li	
5cm			Mea


Area


Length × Width = Area

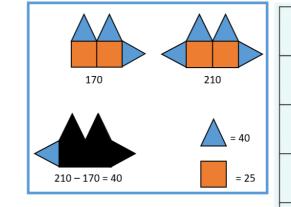
 $8cm \times 2cm = 16cm^2$

Perimeter

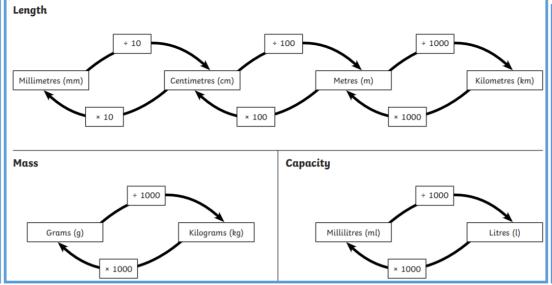
2(8cm + 2cm) = 20cm

?

221


100% = 55.25 x 10 = 552.5

¼ of 40% = 10%


 $221 \div 4 = 55.25$

10% = 55.25

Measurement

Measurement Conversion Chart

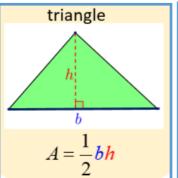
When you are asked to list **all** the possible combinations of two variables, it is important to work systematically so you know you have found all the possibilities.

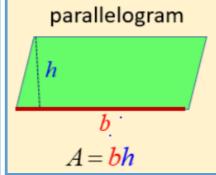
a + b = 14

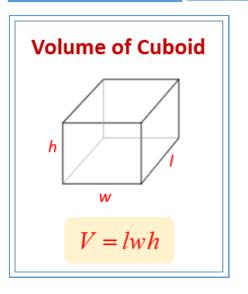
Formula

y = x + 2

y = 2x - 4

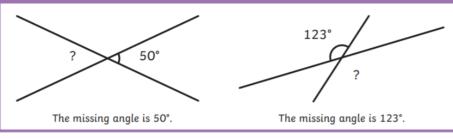

y = 3 + 3x

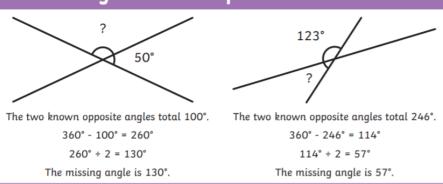

2y = x + 8

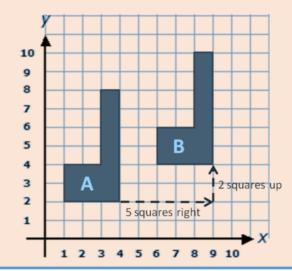

List all the possible values of a and b, where a and b are < 9.

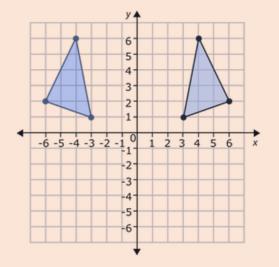
	100
0 + 14 = 14	5 + 9 = 14
1 + 13 = 14	6 + 8 = 14
2 + 12 = 14	7 + 7 = 14
3 + 11 = 14	8 + 6 = 14
4 + 10 = 14	9 + 5 = 14

Measurement cont.

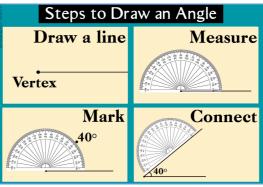


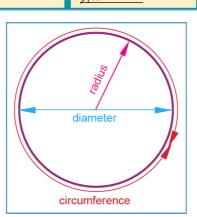

Angles on a straight line always add up to 180°

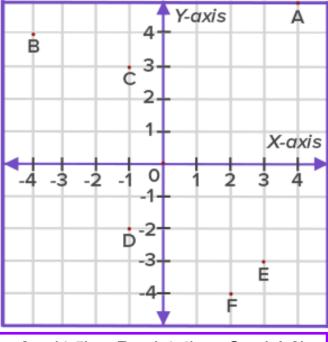

Missing Vertically Opposite Angles Opposite angles are equal.

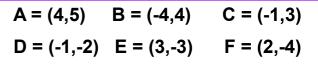


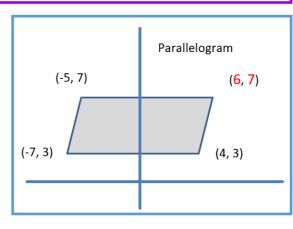
Angles around a point total 360°

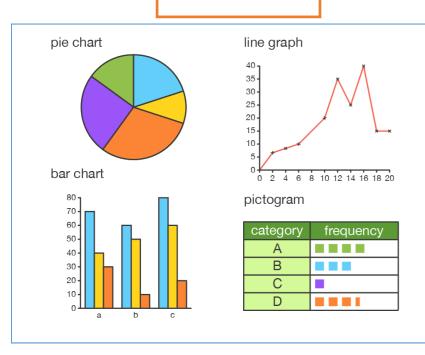



Translation and reflection






Geometry



Statistics

Working with Pie Charts Transport Frequency %a × 360° =120° Car Bus $4\%a \times 360^{\circ} = 80^{\circ}$ Cycle %a × 360° = 100° Walk $\frac{3}{100} \times 360^{\circ} = 60^{\circ}$ Walk Car 120° 100° Cycle Bus

The mean is the average or norm. Add up all of the values to find a total. Divide the total by the number of values you added together. 2 + 2 + 5 + 6 + 7 + 8 = 30 30 ÷ 6 = 5 The mean number is

Mean