

Dereham Junior Academy

Addition and Subtraction

Taught in blocks

Generally follow 'White Rose' Overviews (MTPs) – Website

Year 3

Year 4

Revisit – starters/mini maths Different contexts/units of work

Arithmetic Ninjas (Y6)

Year 5

Year 6

Number Sense

Addition Grid Facts

+	0	1	2	3	4	5	6	7	8	9	10
0	0 + 0	0+1	0+2	0 + 3	0 + 4	0 + 5	0+6	0 + 7	0+8	0 + 9	0 + 10
1	1+0	1+1	1+2	1+3	1+4	1+5	1+6	1 + 7	1+8	1+9	1 + 10
2	2 + 0	2+1	2 + 2	2 + 3	2 + 4	2 + 5	2 + 6	2 + 7	2 + 8	2 + 9	2 + 10
3	3 + 0	3 + 1	3 + 2	3 + 3	3 + 4	3 + 5	3 + 6	3 + 7	3 + 8	3 + 9	3 + 10
4	4 + 0	4+1	4 + 2	4 + 3	4 + 4	4 + 5	4 + 6	4 + 7	4 + 8	4 + 9	4 + 10
5	5 + 0	5+1	5 + 2	5 + 3	5 + 4	5 + 5	5 + 6	5 + 7	5 + 8	5 + 9	5 + 10
6	6 + 0	6+1	6 + 2	6 + 3	6 + 4	6 + 5	6 + 6	6 + 7	6 + 8	6 + 9	6 + 10
7	7 + 0	7 + 1	7 + 2	7 + 3	7 + 4	7 + 5	7 + 6	7 + 7	7 + 8	7 + 9	7 + 10
8	8+0	8+1	8 + 2	8 + 3	8+4	8 + 5	8+6	8 + 7	8+8	8 + 9	8 + 10
9	9+0	9+1	9+2	9 + 3	9+4	9 + 5	9+6	9 + 7	9+8	9+9	9 + 10
10	10 + 0	10 + 1	10 + 2	10 + 3	10 + 4	10 + 5	10 + 6	10 + 7	10 + 8	10 + 9	10 + 10

Summary of strategies video

One More, One Less $1 \ 2 \ 3 \ 4 \ 5 \ 6$	When we add one, we get the next counting number. When we subtract one, we get the previous counting number (e.g. $5 - 1 = 4$).	Number Neighbours: Spot the Difference	Adjacent numbers have a difference of 1. Adjacent odds and evens have a difference of 2. Spot number neighbours (adjacent, odds or evens) to solve subtractions of adjacent numbers (e.g. $5 - 4 = 1$), of adjacent odds (e.g. $9 - 7 = 2$) or adjacent evens (e.g. $6 - 4 = 2$)
Two More, Two Less: Think Odds and Evens $\xrightarrow{2^{2^{+}}}_{1 3 5 7}$	If we add two to a number, we go from odd to next odd or even to next even. If we subtract two from a number, we go from odd to previous odd or even to previous even.	7 Tree and 9 Square	Use these visual images to remember addition and subtractions fact families that children can find tricky. For example, visualising the 7 ree helps remember that $7 - 3 = 4$. Visualising the 9 square helps remember that $3 + 6 = 9$.
Number 10 Fact Families	Go beyond just recalling the pairs of numbers that add to 10. Make sure that we can also spot additions and subtractions which we can use number bonds to 10 to solve.	Ten and A Bit	The numbers $11 - 20$ are made up of 'Ten and a Bit'. Recognising and understanding the 'Ten and a Bit' structure of these numbers enables addition and subtraction facts involving their constituent parts (e.g. 3 + 10 = 13, 17 - 7 = 10, 12 - 10 = 2).
Five and A Bit	The numbers 6, 7, 8 and 9 are made up of 'five and a bit'. This can be shown on hands, and supports decomposition of these numbers into their five and a bit parts (e.g. $5 + 3 = 8, 9 - 5 = 4$).	Make Ten and Then	Additions which cross the 10 boundary can be calculated by Making Ten' first, and then adding on the remaining amount (e.g. $8 + 6$ can be calculated by thinking '8 + 2 = 10 and 4 more makes 14'). The same strategy can be applied to subtractions through 10.
Know about 0	When we add 0 to or subtract 0 from another number, the total remains the same. If we subtract a number from itself, the difference is 0.	Adjust It	Any addition and subtraction can be calculated by adjusting from a fact you know already, (e.g. 6 + 9 is one less than 6 + 10).
Doubles and Near Doubles	Memorise doubles of numbers to 10, using a visual approach. Then use these known double facts to calculate near doubles and hidden doubles. Once we know 6 + 6 = 12 then 6 +7 and 5 + 7 is easy.	Swap It	When the order of two numbers being added (addends) is exchanged the total remains the same. E.g. $1 + 8 = 8 + 1$. Sometimes reversing the order of the two addends makes addition easier to think about conceptually.

https://numbersensemaths.com/teacherportal/nff/stages/stage-5/make-10-and-then-addition

Subtraction Grid Facts

-	0	1	2	3	4	5	6	7	8	9	10
0	0 – 0										
1	1 - 0	1 – 1									
2	2 – 0	2 – 1	2 – 2								
3	3 – 0	3 - 1	3 – 2	3 – 3							
4	4 – 0	4 - 1	4 – 2	4 – 3	4 – 4						
5	5 – 0	5 – 1	5 – 2	5 – 3	5 – 4	5 – 5					
6	6 – 0	6 - 1	6 – 2	6 – 3	6 – 4	6 – 5	6 – 6				
7	7 – 0	7 – 1	7 – 2	7 – 3	7 – 4	7 – 5	7 – 6	7 – 7			
8	8 – 0	8 – 1	8 – 2	8 – 3	8 – 4	8 – 5	8 – 6	8 – 7	8 – 8		
9	9 – 0	9 – 1	9 – 2	9 – 3	9 – 4	9 – 5	9 – 6	9 – 7	9 – 8	9 – 9	
10	10 – 0	10 – 1	10 – 2	10 - 3	10 - 4	10 – 5	10 – 6	10 – 7	10 - 8	10 – 9	10 – 10
11		11 – 1	11 – 2	11 – 3	11 - 4	11 – 5	11 - 6	11 – 7	11 - 8	11 – 9	11 – 10
12			12 – 2	12 – 3	12 – 4	12 – 5	12 – 6	12 – 7	12 – 8	12 – 9	12 – 10
13				13 – 3	13 – 4	13 – 5	13 - 6	13 – 7	13 - 8	13 – 9	13 – 10
14					14 - 4	14 – 5	14 - 6	14 – 7	14 - 8	14 - 9	14 - 10
15						15 – 5	15 – 6	15 – 7	15 – 8	15 – 9	15 – 10
16							16 - 6	16 – 7	16 – 8	16 – 9	16 – 10
17								17 – 7	17 – 8	17 – 9	17 – 10
18									18 – 8	18 - 9	18 – 10
19										19 - 9	19 - 10
20											20 - 10

Calculation Strategies

Models and Manipulatives

Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones

Addition – sequence of learning

total sum add exchange

partition

Complete the sentence.

Use base 10 to calculate 45 + 37

There are $\underline{8}$ tens and $\underline{2}$ ones. 45 + 37 = 82

Tiny is calculating 27 + 36 27 + 36 = 63

No - Tiny needs to exchange.

243 + 172 = 415

Dexter scores 371 points in a game. Rosie scores 263 points. How much do they score altogether? 634

	4	8	0	3	
+	1	4	5	8	
	6	2	6	1	
	1		1		

Not lined up place valueForgotten to add on thecolumns correctlyexchange

I do not think they are correct.

Part + part = whole

Whole - part = part

Aim for Year 5/6

Subtraction – sequence of learning

difference exchange partition

Use base 10 to calculate 43 - 16

43 - 16 = 27

Williatt notionspear obtainiste choose ou subre choose ou ensoution of the s?

537 - 252 = 285

1 will set 2 hundreds is 10 tens. _______hundreds.

531 - 252 = 279

12 mand method to the state of the state of

exchange 1 <u>thatsand</u> for 10 <u>humaseds</u>

$$3,402 - 1,319 = 2,083$$

There are not enough <u>threamsands</u>, so I need to exchange 1 <u>tehuthdreshnd</u> for 10 <u>threamsands</u>

A factory packs 24,638 bags of balloons in a month. They sell 16,545 bags of balloons.

How many bags of balloons do they have left?

There are 8,093 bags of balloons left.

Aim for Year 5/6

Aim for Year 5/6

Any questions?

Next time – multiplication and division

What else would you like?

