Dereham Church of England

Fractions Appendix

Proper fractions
This means that the fraction is below 1 or a whole.
The denominator is bigger than the numerator.

Unit fractions

A unit fraction is any fraction with 1 as its numerator (top number), and a whole number for the denominator (bottom number).

Non-Unit Fractions

Non-unit fractions
A non-unit fraction is a fraction with a number greater than one as its numerator (top number) and a whole number for the denominator (bottom number).

- $\boldsymbol{\zeta}$ vinculum

Denominator- How many total parts there are

What is a fraction?

Fractions are used to represent smaller pieces (or parts) of a whole.
The parts might make up one thing, or more than one thing. Either way, altogether, they make up what's called a whole.

Equivalent fractions

Equivalent fractions are two or more fractions that are all equal. A fraction is a part of a whole: the denominator (bottom number) represents how many equal parts the whole is split into; the numerator (top number) represents the amount of those parts.
 fraction.

Mixed number and improper fractions

When you have a whole number and a fraction side by side, like $1 \frac{1}{2}$, it's called a mixed number. You can convert this into a fraction, but the numerator will be bigger than the denominator. In this case $\frac{3}{2}$. This is called an improper

Mixed number
Improper fraction

Simplifying fractions

This just means that we use the lowest possible numbers when we work out our fractions. We do this to keep things simple it stops us from ending up with fractions made up of huge numbers (which can be confusing). Simplifying fractions is another area which highlights the importance of children mastering their times tables.

- To write a fraction in simplest form or lowest terms follow these two steps:

1 - Find the Greatest Common Factor (GCF) of the numerator and denominator.

2 - Divide both the numerator and the denominator by the GCF.
Example: $\frac{12}{18} \quad 12-1,2,3,4,6,12 \quad 12 \div \underline{12}=\underline{2}$

Year 3

Addition

$\frac{3}{8}+\frac{1}{8}=\frac{4}{8}$

Fraction bars:

Bar model:

\square

Subtraction

$$
\frac{5}{6}-\frac{3}{6}=\frac{2}{6}
$$

subtract the
\qquad ."

Fractions of a quantity
"The whole is divided into \qquad equal parts. Each part is \qquad of the whole."

The whole is divided into 4 equal parts. Each part is $\frac{1}{4}$ of the whole.

Bar models:

$\frac{1}{3}$ of $69=23 \frac{2}{3}$ of $69=46 \frac{3}{3}$ of $69=69$

$\frac{1}{3}$ of $36=12 \frac{2}{3}$ of $36=24 \frac{3}{3}$ of $36=36$

$$
\begin{aligned}
24 \div 3 & =8 \\
\frac{1}{3} \text { of } 24 & =8 \\
8 \times 2 & =16 \\
\frac{2}{3} \text { of } 24 & =16
\end{aligned}
$$

Year 4

Finding equivalent fractions

Fraction bars

Bar models

\square

\square

Finding fractions of an amount

Adding fractions

Mathsbot - fraction wall

$\frac{5}{6}+\frac{4}{6}=\frac{9}{6}=1 \frac{3}{6}$

Fraction bars:

| $\frac{1}{6}$ |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |

Bar model:

Subtracting fractions
$\frac{11}{8}-\frac{5}{8}=\frac{6}{8}$
"When adding fractions with the same \qquad , I only add the \qquad ."

						\mathbf{X}	\mathbf{X}
\mathbf{X}	\mathbf{X}	\mathbf{X}					

$1 \frac{2}{6}-\frac{4}{6}=1 \frac{2}{6}-\frac{2}{6}-\frac{2}{6}=\frac{4}{6}$

"When subtracting fractions with the same \qquad , I only
subtract the \qquad ."
"The whole is divided into \qquad equal parts. Each part is \qquad of the whole."

$$
\frac{1}{3} \text { of } 36=12 \quad \frac{2}{3} \text { of } 36=24 \quad \frac{3}{3} \text { of } 36=36
$$

"I can divide each part into \qquad equal parts to show that \qquad is
\qquad ." equivalent to

\mathbf{X}	\mathbf{X}				

$\frac{1}{3}$ of $69=23 \frac{2}{3}$ of $69=46 \frac{3}{3}$ of $69=69$

80									
8	8	8	8	8	8	8	8	8	8

$$
\begin{gathered}
\frac{1}{10} \text { of } 80=8 \text { so } \frac{7}{10} \text { of } 80=56 \\
80 \div 10=8 \quad 7 \times 8=56
\end{gathered}
$$

Year 5

Adding fractions

$$
3 / 8+9 / 16
$$

$$
3 / 8=6 / 16
$$

"When adding fractions with different denominators, I need to find a common denominator."

$$
3 / 8+9 / 16=15 / 16
$$

Subtracting fractions

"When subtracting fractions with different denominators, I need to find a common denominator."

$$
\frac{1}{3}-\frac{1}{15}=\frac{5}{15}-\frac{1}{15}=\frac{4}{15}
$$

$2 \frac{3}{4}-\frac{7}{8}=2 \frac{6}{8}-\frac{7}{8}=2 \frac{6}{8}-\frac{6}{8}-\frac{1}{8}=1 \frac{7}{8}$

$$
\times 2\left[\begin{array}{l}
\frac{7}{4}-\frac{3}{8}=\frac{11}{8} \\
\frac{14}{8}
\end{array}\right.
$$

Multiplying fractions

$2 / 3 \times 4=8 / 3=22 / 3$

$$
\begin{array}{|l|l|l|}
\hline 1 / 3 & 1 / 3 & 1 / 3 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l}
\hline 1 / 3 & 1 / 3 & 1 / 3 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|}
\hline 1 / 3 & 1 / 3 & \\
\hline
\end{array}
$$

\square

$$
\frac{2}{7} \times 5=\frac{10}{7}=1 \frac{3}{7}
$$

"To multiply a fraction by an integer, I multiply the \qquad by the integer and the \qquad remains the same."

Finding fractions of an amount
$\frac{5}{6}$ of $240=200$
"To find a fraction of an amount, I need to divide by the \qquad and multiply the result by the \qquad _."

240					
$\mathbf{4 0}$					

I know $6 \times 4=24$

$$
\text { So } 240 \div 6=40 \quad \frac{1}{6} \text { of } 240=40 \quad 5 \times 40=200
$$

Finding the whole

$\frac{4}{7}$ of $\quad=24$

$24 \div 4=6$
$1 / 7=6$
$7 / 7=7 \times 6=42$

Year 6

Adding and Subtracting fractions
$\frac{1}{3}+\frac{1}{4}$
Find a common denominator.

$$
\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}
$$

$\frac{7}{9}-\frac{1}{2}$
"To add/subtract the fractions, I could convert them both to \qquad ."
first common multiple of 9 and 2 is $18 \frac{7}{9}-\frac{1}{2}=\frac{14}{18}-\frac{9}{18}=\frac{5}{18}$
$1 \frac{1}{2}+2 \frac{1}{6}$
$1+2=3$
$\frac{1}{2}+\frac{1}{6}=\frac{3}{6}+\frac{1}{6}=\frac{4}{6}$

$3+\frac{4}{6}=3 \frac{4}{6}=3 \frac{2}{3}$$\quad$ OR | $1 \frac{1}{2}+2 \frac{1}{6}$ | $=\frac{3}{2}+\frac{13}{6}$ |
| ---: | :--- |
| | $=\frac{9}{6}+\frac{13}{6}$ |
| | $=\frac{22}{6}=3 \frac{4}{6}=3 \frac{2}{3}$ |

$3 \frac{3}{5}-1 \frac{7}{10} \quad 3 \frac{3}{5}-1 \frac{7}{10}=\frac{18}{5}-\frac{17}{10}=\frac{36}{10}-\frac{17}{10}=\frac{19}{10}=1 \frac{9}{10}$ OR
$3 \frac{3}{5}=2 \frac{8}{5}$
$3 \frac{3}{5}-1 \frac{7}{10}=2 \frac{8}{5}-1 \frac{7}{10}=2 \frac{16}{10}-1 \frac{7}{10}=1 \frac{9}{10}$

Multiplying fractions

$$
\begin{aligned}
& \frac{1}{3} \times \frac{3}{5}=\frac{3}{15}=\frac{1}{5} \\
& \frac{1}{3} \times \frac{3}{5}=\frac{1}{3} \text { of } 3 \text { fifths }=1 \text { fifth }
\end{aligned}
$$

"When multiplying a pair of fractions, I need to multiply the
\qquad and multiply the \qquad ."

$$
\frac{2}{3} \times \frac{4}{5}=\frac{2 \times 4}{3 \times 5}=\frac{8}{15}
$$

$\frac{3}{4} \times \frac{1}{5}=\frac{3}{20}$
$\frac{4}{5} \times \frac{3}{7}=\frac{12}{35}$
$\frac{4}{5} \times \frac{2}{3}=\frac{8}{15}$

Dividing fractions

Percentages of amounts

"If 100% is equal to \qquad , then
\qquad $\%$ is equal to \qquad ."

240									
24	24	24	24	24	24	24	24	24	24

10% of $240=24$ so $4 \times 24=80+16=96$
OR 120-24 = 96

$\mathbf{1 1 \%}$ of 250

10% of $250=25$
1% of $250=2.5$
11% of $250=25+2.5=27.5$
60% of ___ $=4200$

?									
700									

$4200 \div 6=700$
If $60 \%=4200$, then $10 \%=700 . \quad 700 \times 10=7000$
$100 \%=7000$

